
Hans-Petter Halvorsen

https://www.halvorsen.blog

Week Assignment
Software Implementation

1. Code Reviews
– Code Review Checklist

2. Refactoring
3. Pair Programming

Week Assignment

Test out these 3 things regularly during the next weeks as part of
your Project

Project Management

Implementation/Coding

W
eek Assignm

ent 1

W
eek Assignm

ent 2

W
eek Assignm

ent N

W
eek Assignm

ent 3

...

This Course/Project

... ...

In Class we have focus on the Week Assignments – But In addition to the Week
Assignments you also need to do Project Management and Coding every week

Pr
oj

ec
t S

ta
rt

Project Finished

It is also import that you use Scrum and Azure DevOps, including Taskboard, Scrum Meetings, etc. within your Project

Project Work

Project
Management

Documentation

Development

Project Work consists of working
with Project Management,
Development and Documentation
in parallel.
If you remove one of these, the
project will fail

If you remove one of the legs, the table will fall apart

Table with 3 legs

So even when you are
in “Implementation
Mode”, don’t forget
Project Management
and Documentation

Main Focus this Week
• Continue Implementing your System
– GUI
– Classes and Methods
– Database Logic (Stored Procedures, etc.)
– etc.
– Coding in general

• Use Scrum and Azure DevOps as your daily Tools
– Sprint Backlog, Taskboard, Daily Scrum Meetings

• Apply Agile Programming Principles (see next slide)

Agile Programming Principles
Continuous focus on improving the code is important
in Agile methods (such as Scrum, XP, etc.). Some
important Agile Programming principles are:
• Periodically internal Code Reviews
• Refactoring: Continuously Improving the Code
• Pair Programming – 2 persons sit together when

they do coding. Goal: Better Code Quality. Very
popular in XP.

Hans-Petter Halvorsen

https://www.halvorsen.blog

Software
Implementation

Table of Contents

Requirements
Analysis

Design

Implementation

Testing

Maintenance

Planning
Deployment

SRS

SDD

STD

Code

Installation
Guides

User Guides

Gantt Chart

with ER Diagram, UML Diagrams, CAD Drawings

Test
Documentation

Software Requirements
Specifications

Software Design Documents
System Documentation

Test Plan

Project Planning

End-User
Documentation

System
Documentation

Software Test Documentation

SDP
Software Development

Plan

Gantt Chart

The Software
Development

Lifecycle
(SDLC)

Days
Weeks

Software Development

24 hours

2-4 weeks
1 -12 months

Working Software at all times.
Testing every day Internal Iterations/Sprints

Months/Years
Public Beta, RC Releases

Daily Scrum
Meetings

Sprint Reviews
& Planning

Beta, RC Testing

Pr
oj

ec
t S

ta
rt

Project Finished

... Iterations/Sprints

Alpha Beta RC RTM

Real life Software Development

Beta1
Beta 2

Beta 3
...

Testing/Bug Fixing/

Refactoring/Redesign

Testing/Bug Fixing/

Refactoring/Redesign

RC1
RC2

...

The Software is beeing built and tested internally from beginning to the end (every day)

Eksternal Testing

Eksternal Testing

What is Software
Implementation?

Programming
Programming can be considered as both Art and
Science
• Programming is a science as it needs to follow

a set of engineering principles and guidelines.
• It is also being classified as art as there are

lots of possibilities of using creative and
innovative minds.

Software Engineering (Saikat Dutt, et al.)

I would say those (Art & Science) are equally important in Programming

Programming Principles

Software Engineering (Saikat Dutt, et al.)

• Validity: The program must give the correct result which is valid.
– For example, let us consider a program intended to add two numbers say add (x, y). When we pass

the value (4, 5), it should give the value 9 as output and when we pass the value (–4, 5), it should
give the value 1 as output.

• Consistency: The program must do repeatedly what it intends to do. The
program should give the output consistently.
– For example, if add (4.2, 5.4) gives the output as 10, add (5.4, 4.2) also should give the output as 10.

• Maintainability: The program must be easily changeable (addition and
modification) and should have proper documentations.

• Readability: The program must be easily readable so that it is easily
maintainable.

• Usability: The program must be usable for the specific purpose without
any trouble.

Implementation
• The ultimate goal of most software engineering projects is to

produce a working program.
• The act of transforming the detailed design into a valid program

in some programming language, together with all its supporting
activities is referred to as implementation.

• The implementation phase involves more than just writing code.
Code also needs to be tested and debugged as well as compiled
and built into a complete executable product (see next slide).

• We usually need to use a Source Code Control Tool in order to
keep track of different versions of the code.

Software Implementation

Developers Perspective

Errors in a program can be
broadly categorized into syntax
and logic errors.

Requirements & Design

• In many cases the detailed design is not done explicitly (in
the Design Phase) but is left as part of the implementation

• Doing the detailed design as part of the implementation is
usually faster, but it may result in a less cohesive and less
organized design, because the detailed design of each
module will usually be done by a different person.

• In small projects, the detailed design is usually left as part
of the implementation (and in Agile/Scrum)

• In larger projects, or when the programmers are
inexperienced, the detailed design will be done by a
separate person

Design & Implementation

Programming Languages
How many do you know about?

Programming Languages

http://crashworks.org/if_programming_languages_were_vehicles

C/C++
C#

Python

Visual
Basic

Java

Objective-C

PHP

Ruby

Perl

MATLAB LabVIEW Swift
Programming Languages compared with Cars:

A few examplesKotlin

http://crashworks.org/if_programming_languages_were_vehicles

Programming Languages

• What is a Programming Language?
• https://en.wikipedia.org/wiki/Programming_l

anguage
List of known Programming Languages:
• https://en.wikipedia.org/wiki/List_of_program

ming_languages

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/List_of_programming_languages

Integrated Development Environment (IDE)

• Programming Languages vs. IDE
• One IDE can handle multiple Languages

• C#, VB.NET, C++, ...
• Java
• Objective-C/Swift
• LabVIEW

• Visual Studio
• Eclipse
• Xcode
• LabVIEW

https://en.wikipedia.org/wiki/Integrated_development_environment

IDE = Templates + Code Editor + Debugger + Compiler – Integrated in one unified Environment

https://en.wikipedia.org/wiki/Integrated_development_environment

Programming Languages
Which Languages are most Popular?

Most Popular
Programming
Languages*

*Stackoverflow Developer Survey 2020

JavaScript, HTML/CSS, SQL, Python
and C# are tools we are using at
USN, and they are all on the top 10
list

Code

• Windows: 50 million code lines
• Google: 2 billion code lines
http://www.tek.no/artikler/sa-mye-kode-bestar-hele-google-av/192834

http://www.tek.no/artikler/sa-mye-kode-bestar-hele-google-av/192834

Hans-Petter Halvorsen

https://www.halvorsen.blog

Code Review

Table of Contents

See Next Slides for more details...

Code Review
• Do a Code Review on the Code for one of the other Team members.

Focus in the Code Review:
– The code is according to SRD (the code is according to the UML diagrams

,etc.)
– Programming Style and Coding Guidelines are followed
– Comments are used properly, etc.
– Create a “Code Review Checklist” that you use during the Review

• Fill out the “Code Review Checklist”. Upload to Teams/Azure DevOps.
• If you find bugs, they should be reported in Azure DevOps (Work

Items)
• Go through and discuss the Code Review with the Developer

http://en.wikipedia.org/wiki/Code_review

http://en.wikipedia.org/wiki/Code_review

Code Review

http://www.evoketechnologies.com/blog/code-review-checklist-perform-effective-code-reviews/

Purpose: Go through the code (and documentation)
in detail to find weaknesses and ways to make it
better (more readable, more robust, easier to
maintain in the future, avoid future bugs, etc.)

http://www.evoketechnologies.com/blog/code-review-checklist-perform-effective-code-reviews/

http://www.evoketechnologies.com/blog/code-review-checklist-perform-effective-code-reviews/

http://www.evoketechnologies.com/blog/code-review-checklist-perform-effective-code-reviews/

Why Do Reviews?

Requirements

Design

Implementation

Testin
g

Deployment

SDLC

Cost per defects/bug

Improve the Code Quality and prevent
future Bugs before its to late!

“If your code works, but you don’t know why
– Then it does not work, you just don’t know it yet”

Why Do Reviews?

Code Review Procedure

Perform
Code Review

Fix Issues that
appeared in the

Code Review
Refactoring

Create
Checklist
Template

Go through Check List

Loop until Project is Finished

Project Start Project Finished

Upload to Teams/Azure DevOps

Create Code Review
Folder structure in
Team/Azure DevOps

Upload to Teams/Azure DevOps
Upload to Teams/Azure DevOps

Periodic Intervals

Code Review Checklist Template Example

Status Description Comments Priority

Are all variables properly defined with
meaningful, consistent, and clear names?

Does the code completely and correctly
implement the design?

Are all comments consistent with the
code?

Are there any blocks of repeated code
that could be condensed into a single
Method?

... (if you find stuff that are not listed,
just fill out more rows in the Excel sheet)

Date of Code Review: <Fill out>
Code Owner: <Fill out>
Code Reviewer: <Fill out>

Make the Code review Template available for everybody
by the uploading it to Teams/Azure DevOps

+++ (you should have 20-50 Items in the Checklist)

Use e.g., Excel to create a Code Review Checklist Template (e.g., with different Tabs for different Topics).

Completed Code Review Checklist Example

Status Description Comments Priority

✅
Are all variables properly defined with
meaningful, consistent, and clear names?

OK

❌
Does the code completely and correctly
implement the design?

No. GUI not according to SRD. Class “Customer” not according to UML. See SRD
document. 2

✅
Are all comments consistent with the
code?

OK

❌
Are there any blocks of repeated code
that could be condensed into a single
Method?

See Code in Form1.aspx.cs, line 205-300
1

... ... (if you find stuff that are not listed,
just fill out more rows in the Excel sheet) ...

Date of Code Review: 2016.02.25
Code Owner: Nils Hansen
Code Reviewer: Per Jensen

After the Code Review Checklist has been filled out by
the Code Reviewer, the List should be uploaded to
Teams/Azure DevOps

Fields filled out by the Code Reviewer

Implementation/Coding

• Programming Style and Coding Guidelines
• Comments
• Debugging
• Code Review
• Refactorization

Coding Conventions/Programming Practices
• Naming Convention

– File Names, Folder Names, Class and Methods Names, Uppercase/Lowercase, etc.

• Programming Principles and Best Practice
– Variables, Database Communications, Public/Private/Global/Local, Comments, Code

Structure

• Guidelines
– Good developers always follow the coding standards and

guidelines while writing the code.
– Code written using the standards and guidelines are easy to

review/understand/debug.
– It is also easy to maintain and enhance the code if it follows the

standards and guidelines.
Software Engineering (Saikat Dutt, et al.)

Coding Standards
• Reusability (easy to reuse parts of code as it is written in standard

code)
• Maintainability (easy to identify bugs, easy to add new features)
• Readability (coding standard increases easy reading)
• Understand ability (easy to understand – this is not the same as

readability, e.g., repetitive code may be is readable, but not
understandable)

• Robustness (code that can handle unexpected inputs and
conditions)

• Reliability (code i.e., unlikely to produce wrong results)

Software Engineering (Saikat Dutt, et al.)

Naming Convention
• Camel Notation

– For variables and parameters/arguments
– Examples: “myCar”, “backColor”

• Pascal Notation
– For classes, methods and properties
– Examples: “ShowCarColor”

• Hungarian Notation
– For controls on your user interface we either use “Pascal notation” or

“Hungarian notation”, but stick to one of them!
– Examples: “txtName”, “lblName”

• Acronyms
– Examples: “DBRate”, “ioChannel”, “XmlWriter”, “htmlReader”

Code Review Checklist and Guidelines for C# Developers

http://www.codeproject.com/Articles/593751/Code-Review-Checklist-and-Guidelines-for-Csharp-De

q Naming conventions to be followed always. Generally for variables/parameters, follow Camel
casing and for method names and class names, follow Pascal casing.

q Code Reusability: Extract a method if the same piece of code is being used more than once or
you expect it to be used in future.

q Make sure that there shouldn't be any project warnings.
q Code Consistency. Use same type of variables, etc.
q Code Readability: Should be maintained so that other developers understand your code easily.
q Methods: Make sure that methods have less number of lines of code. Not more than 30 to 40

lines.
q Unit Testing. Write developer test cases and perform unit testing to make sure that basic level

of testing is done before it goes to QA testing.
q Avoid nested for/foreach loops and nested if conditions as much as possible.
q Understand thoroughly the OOPs concepts and try implementing it in your code.
q Avoid straightaway copy/pasting of code from other sources. It is always recommended to hand

write the code even though if you are referring to the code from some sources.
q Peer code reviews. Swap your code files/pages with your colleagues to perform internal code

reviews. Google “Code Review Checklist” and you will find lots of Examples!

http://www.codeproject.com/Articles/593751/Code-Review-Checklist-and-Guidelines-for-Csharp-De

Software Development Plan
• As mention earlier, many of these things should be

included in the Software Development Plan (SDP)
• Make sure to update the SDP if you lack

information about Coding Conventions,
Programming Practices, Code Reviews, etc.

• Information where you find the Code Review Check
List(s) and where to put the actual Reviews should
be part od SDP

Hans-Petter Halvorsen

https://www.halvorsen.blog

Refactoring

Table of Contents

See Next Slides for more details...

Refactoring
• Based on the Code Review, you should

Refactoring (Improve) your Code

Refaktorering (omstrukturering)
• Se etter forbedringsmuligheter og implementer dem selv om

det ikke er umiddelbart behov for dem
• Koden blir mer forståelig og enklere å endre, og mindre behov

for dokumentasjon (mer vedlikeholdbar)
• Noen endringer krever at arkitekturen omstruktureres

(kostbart)
• Eksempler på refaktorering:

– Reorganisering av klassehierarki for å fjerne duplisert kode
– Lag og ta i bruk feks et Klassebibliotek for kode som deles av flere

moduler
– Forbedre navn på attributter og metoder
– Erstatte kode med kall til metoder i et programbibliotek

Refactoring - Symptoms
• Coding Style and Name Conventions not followed
• Proper Commenting not followed
• Duplicated code (clearly a waste).
• Long method (excessively large or long methods perhaps should be

subdivided into more cohesive ones).
• Large class (same problem as long method).
• Switch statements (in object-oriented code, switch statements can in most

cases be replaced with polymorphism, making the code clearer).
• Feature envy, in which a method tends to use more of an object from a class

different to the one it belongs.
• Inappropriate intimacy, in which a class refers too much to private parts of

other classes.
=> Any of these symptoms (and more) will indicate that your code can be
improved. You can use refactoring to help you deal with these problems.

Essentials of Software Engineering: Frank Tsui; Orlando Karam; Barbara Bernal, 3 ed., Jones & Bartlett Learning

Update Code Review Checklist

Status Description Comments Priority Refactoring – What have been done to improve it?

✅
Are all variables properly defined with
meaningful, consistent, and clear
names?

OK

❌
Does the code completely and
correctly implement the design?

No. GUI not according to SRD.
Class “Customer” not according
to UML. See SRD document.

2

✅
Are all comments consistent with
the code?

OK

❌
Are there any blocks of repeated code
that could be condensed into a single
Method?

See Code in Form1.aspx.cs, line
205-300 1

...
... (if you find stuff that are not listed,
just fill out more rows in the Excel
sheet)

...

Date of Code Review: 2016.02.25
Code Owner: Nils Hansen
Code Reviewer: Per Jensen
Refactoring Date: 2016.03.10Change Status

Describe what you have done

Fields filled out/Changed by the Code Owner

Describe what you have done

Hans-Petter Halvorsen

https://www.halvorsen.blog

Pair Programming

Table of Contents

See Next Slides for more details...

Pair Programming
• Pair Programming is used in Agile Development

and especially eXtreme Programming (XP)
• Work together (for a short period) 2 and 2 and

test out Pair Programming
• What do you think of this method? Pros and

Cons? – Make the Pros/Cons List together
(PowerPoint with 2-3 slides).

Parprogrammering
• To programmerere utvikler kode sammen:
• – Fører:
– kriver på tastaturet

• – Navigatør
– observerer arbeidet til føreren og ser etter feil og svakheter
– ser etter alternativer
– noterer ting som må gjøres
– slår opp referanser

• Kan brukes uavhengig av smidige metoder

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

